Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Mol Genet Metab ; 142(1): 108469, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38564972

RESUMO

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.

2.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587076

RESUMO

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Complemento C4 , Glicopeptídeos , Biomarcadores , Polissacarídeos
3.
Sci Rep ; 14(1): 5755, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459093

RESUMO

Identifying disease predictors through advanced statistical models enables the discovery of treatment targets for schizophrenia. In this study, a multifaceted clinical and laboratory analysis was conducted, incorporating magnetic resonance spectroscopy with immunology markers, psychiatric scores, and biochemical data, on a cohort of 45 patients diagnosed with schizophrenia and 51 healthy controls. The aim was to delineate predictive markers for diagnosing schizophrenia. A logistic regression model was used, as utilized to analyze the impact of multivariate variables on the prevalence of schizophrenia. Utilization of a stepwise algorithm yielded a final model, optimized using Akaike's information criterion and a logit link function, which incorporated eight predictors (White Blood Cells, Reactive Lymphocytes, Red Blood Cells, Glucose, Insulin, Beck Depression score, Brain Taurine, Creatine and Phosphocreatine concentration). No single factor can reliably differentiate between healthy patients and those with schizophrenia. Therefore, it is valuable to simultaneously consider the values of multiple factors and classify patients using a multivariate model.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Creatina , Fosfocreatina , Espectroscopia de Ressonância Magnética , Encéfalo
4.
Hum Genet ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538918

RESUMO

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.

5.
Proteomics ; : e2400012, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470198

RESUMO

Asparagine-linked glycosylation 1 protein is a ß-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2 ) trisaccharides (Hex-HexNAc2 ) and novel tetrasaccharides (NeuAc-Hex-HexNAc2 ) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.

6.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430517

RESUMO

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação
7.
Mol Genet Metab ; 141(1): 108126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184430
8.
Genet Med ; 26(2): 101027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955240

RESUMO

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Assuntos
Ataxia Cerebelar , Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Acidente Vascular Cerebral , Adulto , Humanos , Pré-Escolar , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Acetazolamida/uso terapêutico , Seguimentos , Estudos Prospectivos
9.
JIMD Rep ; 64(6): 424-433, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37927489

RESUMO

The phosphatidylinositol glycan anchor biosynthesis class O protein (PIGO) enzyme is an important step in the biosynthesis of glycosylphosphatidylinositol (GPI), which is essential for the membrane anchoring of several proteins. Bi-allelic pathogenic variants in PIGO lead to a congenital disorder of glycosylation (CDG) characterized by global developmental delay, an increase in serum alkaline phosphatase levels, congenital anomalies including anorectal, genitourinary, and limb malformations in most patients; this phenotype has been alternately called "Mabry syndrome" or "hyperphosphatasia with impaired intellectual development syndrome 2." We report a 22-month-old female with PIGO deficiency caused by novel PIGO variants. In addition to the Mabry syndrome phenotype, our patient's clinical picture was complicated by intermittent hypoglycemia with signs of functional hyperinsulinism, severe secretory diarrhea, and osteopenia with a pathological fracture, thus, potentially expanding the known phenotype of this disorder, although more studies are necessary to confirm these associations. We also provide an updated review of the literature, and propose unifying the nomenclature of PIGO deficiency as "PIGO-CDG," which reflects its pathophysiology and position in the broad scope of metabolic disorders and congenital disorders of glycosylation.

10.
Mol Genet Metab ; 140(3): 107695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708666

RESUMO

BACKGROUND: Propionic acidemia (PA) is a rare autosomal recessive organic acidemia that classically presents within the first days of life with a metabolic crisis or via newborn screening and is confirmed with laboratory tests. Limited data exist on the natural history of patients with PA describing presentation, treatments, and clinical outcomes. OBJECTIVE: To retrospectively describe the natural history of patients with PA in a clinical setting from a real-world database using both structured and unstructured electronic health record (EHR) data using novel data extraction techniques in a unique care setting. DESIGN/METHODS: This retrospective study used EHR data to identify patients with PA seen at the Mayo Clinic. Unstructured clinical text (medical notes, pathology reports) were analyzed using augmented curation natural language processing models to enhance analysis of data extracted by structured data fields (International Classification of Diseases 9th or 10th revision [ICD-9/-10] codes, Current Procedural Terminology [CPT] codes, and medication orders). De-identified health records were also manually reviewed by clinical scientists to ensure data accuracy and completeness. The index date was defined as the patient's date of PA diagnosis at the Mayo Clinic. Results were reported as aggregate descriptive statistics relative to patients' index dates. Complications, therapeutic interventions, laboratory tests, procedures, and hospitalization encounters related to PA were described at and within 6 months of the patient's index date, and from medical history available before the index date. RESULTS: In total, 13 patients with PA were identified, with visits occurring from 1998 to 2022. Age at diagnosis ranged from birth to 3 years; age at initial evaluation at the Mayo Clinic ranged from 3 days to 28 years. The mean number of Mayo Clinic outpatient visits was 31 (median duration of care, 2 years). PA-related complications were documented in 85% of patients and included nutritional difficulties (46%), metabolic decompensation events (MDEs; 38%), neurologic abnormalities (38%), and cardiomyopathy (7%). One pair of affected siblings had mild symptoms and no complications or MDEs. All 5 patients with a history of MDEs presented with developmental delays. Among patients with MDEs, the mean frequency of outpatient clinical care visits was 10 per year, and 3 patients required inpatient hospitalization (mean duration, 16 days). The incidence of severe complications was higher among patients with MDEs than those without MDEs. Of the patients with MDEs, 2 experienced crises while receiving treatment at the Mayo Clinic, with 9 total MDEs occurring between the 2 patients. Symptoms at presentation included hyperammonemia (78%), fever and/or decreased nutritional intake (67%), hyperglycemia/hypoglycemia (56%), intercurrent upper respiratory infection and/or lethargy (44%), constipation (33%), altered mental status (33%), and cough (33%). CONCLUSIONS: This study highlights the range and frequency of clinical outcomes experienced by patients with PA and demonstrates the clinical burden of MDEs.


Assuntos
Acidemia Propiônica , Recém-Nascido , Humanos , Pré-Escolar , Acidemia Propiônica/complicações , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/epidemiologia , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Triagem Neonatal/métodos
11.
Genes (Basel) ; 14(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37628636

RESUMO

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Autofagia/genética , Mitocôndrias/genética , Metabolismo Energético
12.
Orphanet J Rare Dis ; 18(1): 247, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644541

RESUMO

Congenital disorders of glycosylation are a group of more than 160 rare genetic defects in protein and lipid glycosylation. Since the first clinical report in 1980 of PMM2-CDG, the most common CDG worldwide, research made great strides, but nearly all of them are still missing a cure. CDG diagnosis has been at a rapid pace since the introduction of whole-exome/whole-genome sequencing as a diagnostic tool. Here, we retrace the history of CDG by analyzing all the patents associated with the topic. To this end, we explored the Espacenet database, extracted a list of patents, and then divided them into three major groups: (1) Drugs/therapeutic approaches for CDG, (2) Drug delivery tools for CDG, (3) Diagnostic tools for CDG. Despite the enormous scientific progress experienced in the last 30 years, diagnostic tools, drugs, and biomarkers are still urgently needed.


Assuntos
Defeitos Congênitos da Glicosilação , Narração , Humanos , Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Bases de Dados Factuais , Exoma
13.
Mol Genet Metab ; 140(3): 107688, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647829

RESUMO

Biallelic pathogenic variants in PGAP3 cause a rare glycosylphosphatidyl-inositol biogenesis disorder, PGAP3-CDG. This multisystem condition presents with a predominantly neurological phenotype, including developmental delay, intellectual disability, seizures, and hyperphosphatemia. Here, we summarized the phenotype of sixty-five individuals including six unreported individuals from our CDG natural history study with a confirmed PGAP3-CDG diagnosis. Common additional features found in this disorder included brain malformations, behavioral abnormalities, cleft palate, and characteristic facial features. This report aims to review the genetic and metabolic findings and characterize the disease's phenotype while highlighting the necessary clinical approach to improve the management of this rare CDG.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Glicosilação , Fenótipo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Convulsões , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Hidrolases de Éster Carboxílico/genética , Receptores de Superfície Celular/genética
15.
Am J Med Genet A ; 191(9): 2428-2432, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462082

RESUMO

Mitogen-activated protein kinase 8-interacting protein 3 gene (MAPK8IP3) encodes the c-Jun-amino-terminal kinase-interacting protein 3 (JIP3) and is involved in retrograde axonal transport. Heterozygous de novo pathogenic variants in MAPK8IP3 result in a neurodevelopmental disorder with or without brain abnormalities and possible axonal peripheral neuropathy. Whole-exome sequencing was performed on an individual presenting with severe congenital muscle hypotonia of neuronal origin mimicking lethal spinal muscular atrophy. Compound heterozygous rare variants (a splice and a missense) were detected in MAPK8IP3, inherited from the healthy parents. Western blot analysis in a muscle biopsy sample showed a more than 60% decrease in JIP3 expression. Here, we suggest a novel autosomal recessive phenotype of a lower motor neuron disease caused by JIP3 deficiency.


Assuntos
Atrofia Muscular Espinal , Doenças Musculares , Anormalidades Musculoesqueléticas , Humanos , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fenótipo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
17.
Cell Rep Med ; 4(6): 101056, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257447

RESUMO

Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.


Assuntos
Aldeído Redutase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glicosilação , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Manose/metabolismo , Metabolômica
18.
Mol Genet Metab ; 139(2): 107606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224763

RESUMO

BACKGROUND: Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS: We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS: Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION: Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS: Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Trombose , Humanos , Masculino , Glicosilação , Estudos Prospectivos , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Trombose/epidemiologia , Trombose/genética , Fosfotransferases (Fosfomutases)/genética , Antitrombinas/uso terapêutico
19.
Ther Adv Rare Dis ; 4: 26330040221150269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181075

RESUMO

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) (OMIM: 614921) is a rare autosomal recessive inherited metabolic disease caused by the deficiency of the PGM1 enzyme. Like other CDGs, PGM1-CDG has a multisystemic presentation. The most common clinical findings include liver involvement, rhabdomyolysis, hypoglycemia, and cardiac involvement. Phenotypic severity can vary, though cardiac presentation is usually part of the most severe phenotype, often resulting in early death. Unlike the majority of CDGs, PGM1-CDG has a treatment: oral D-galactose (D-gal) supplementation, which significantly improves many aspects of the disorder. Here, we describe five PGM1-CDG patients treated with D-gal and report both on novel clinical symptoms in PGM1-CDG as well as the effects of the D-gal treatment. D-gal resulted in notable clinical improvement in four patients, though the efficacy of treatment varied between the patients. Furthermore, there was a significant improvement or normalization in transferrin glycosylation, liver transaminases and coagulation factors in three patients, creatine kinase (CK) levels in two, while hypoglycemia resolved in two patients. One patient discontinued the treatment due to urinary frequency and lack of clinical improvement. Furthermore, one patient experienced recurrent episodes of rhabdomyolysis and tachycardia even on higher doses of therapy. D-gal also failed to improve the cardiac function, which was initially abnormal in three patients, and remains the biggest challenge in treating PGM1-CDG. Together, our findings expand the phenotype of PGM1-CDG and underline the importance of developing novel therapies that would specifically treat the cardiac phenotype in PGM1-CDG.


An update on benefits and challenges of treating PGM1-CDG with galactose PGM1-CDG is a rare genetic disorder that affects glycosylation, an important biochemical process happening in every cell of the body. Because glycosylation is essential for correct functioning of the cells and happens in every tissue and organ, patients with PGM1-CDG can have a variety of symptoms affecting many different organs. Main symptoms include low blood glucose levels, hyperinsulinism, bleeding disorder, liver, muscle, heart problems, and so on. This disorder is usually diagnosed based on the genetic testing, patient's symptoms, and transferrin glycosylation test, which detects abnormalities in glycosylation in blood. So far, more than 60 patients have been reported. Unlike many genetic disorders, PGM1-CDG has a treatment in the form of a sugar called galactose, which naturally occurs in milk, and can treat many symptoms of the disorder. The patients are advised to take it every day by mouth in the form of powder. Here, we describe five more patients with PGM1-CDG, who were treated with galactose. Each of the patients had novel symptoms and they responded to the treatment differently, which helps us to better understand the disorder and the effects of therapy better. We found that many symptoms improved or normalized; however, some patients experienced persistent symptoms and even adverse events that made them stop treatment. Unfortunately, we did not observe any improvement of heart-related issues. Given that heart issues are the most severe aspect of PGM1-CDG and can result in early death, therapies that target heart issues in PGM1-CDG are still necessary. In conclusion, we describe novel aspects of PGM1-CDG, which will help understand and diagnose the disorder better, and highlight the importance of developing new therapies for this disorder that would specifically treat the heart.

20.
Am J Med Genet A ; 191(6): 1626-1631, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36930724

RESUMO

ALG13-CDG is a rare X-linked disorder of N-linked glycosylation. Given the lack of long-term outcome data in ALG13-CDG, we collected natural history data and reviewed individuals surviving to young adulthood with confirmed pathogenic variants in ALG13 in our own cohort and in the literature. From the 14 ALG13-CDG patients enrolled into our Frontiers of Congenital Disorders of Glycosylation Consortium natural history study only two patients were older than 16 years; one of these two females is so far unreported. From the 52 patients described in the medical literature with confirmed pathogenic variants in ALG13 only five patients were older than 16 years (all females), in addition to the new, unreported patient from our natural history study. Two male patients have died due to ALG13-CDG, and there were no surviving males older than 16 years with a confirmed ALG13-CDG diagnosis. Our adolescent and young adult cohort of six patients presented with epilepsy, muscular hypotonia, speech, and developmental delay. Intellectual disability was present in all female patients with ALG13-CDG. Unreported features included ataxia, neuropathy, and severe gastrointestinal symptoms requiring G/J tube placement. In addition, two patients from our natural history study developed unilateral hearing loss. Skeletal abnormalities were found in four patients, including osteopenia and scoliosis. Major health problems included persistent seizures in three patients. Ketogenic diet was efficient for seizures in three out of four patients. Although all patients were mobile, they all had severe communication problems with mostly absent speech and were unable to function without parental support. In summary, long-term outcome in ALG13-CDG includes gastrointestinal and skeletal involvement in addition to a chronic, mostly non-progressive neurologic phenotype.


Assuntos
Doenças Ósseas Metabólicas , Perda Auditiva Unilateral , Deficiência Intelectual , Feminino , Masculino , Humanos , Glicosilação , Ataxia , Doenças Raras , N-Acetilglucosaminiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...